ABC’s of Manual Cleaning Part VI: Regulatory and Standards Expectations Regarding Manual Cleaning

Part VI

Part five of our blog series focused on allocating various manual cleaning responsibilities, and on how to create a robust hygiene and sanitation culture within an organization. In this blog, we’ll look at the U.S. regulatory requirements, key industry, and global standards, and the integrated sanitation best practices that would support a manual cleaning operation.

Understanding the U.S. Regulatory Context

Cleaning and sanitation are key regulatory requirements in the food industry. According to recent FDA estimates, about 1 in 3 U.S. food recalls may happen because of poor sanitary practices, and a significant proportion of these relate to Salmonella and Listeria monocytogenes cross-contamination incidents within a food plant.

The 21CFR 117 FDA regulations are clear about the importance of regular cleaning to prevent allergen cross-contact and cross-contamination of food products. Section 117.35 on “Sanitary Operations” clarifies that the food-contact surfaces of equipment must be cleaned and sanitized as necessary, and that non-food contact surfaces must be cleaned regularly.

Moreover, FSIS legislation based on Federal Meat Inspection Act, Poultry Products Inspection Act, and Egg Products Inspection Act also emphasizes proper cleaning and sanitation to ensure the sanitary conditions necessary to produce safe food. Cleaning surfaces in these establishments will need some efficient and effective form of mechanical agitation using manual cleaning tools to remove rigid soils, e.g. surface biofilms.

Industry and Global Standard Expectations

GFSI-based certification standards have provided a series of benchmarks for harmonizing global food safety programs to an agreed-upon level of industrial expectation. The common standards focus greatly on using the right types of cleaning tools, as stated:

  • According to BRC Global Food Standard – Food Safety, Section, “Cleaning equipment shall be hygienically designed and fit for purpose, suitably identified for intended use (e.g. color-coded or labeled), cleaned and stored in a manner to prevent contamination.”
  • SQF Code, Section states: “All equipment cleaned after use or at a frequency to control contamination and stored in a clean and serviceable condition to prevent microbiological or cross-contact allergen contamination.”
  • FSSC 22000 – ISO 22002 Prerequisite Programs on Food Safety – Part 1: Food Manufacturing, Section 11.2 on ‘Cleaning and Sanitizing agents and tools’ states: “tools and equipment shall be of hygienic design and maintained in a condition which does not present a potential source of extraneous matter.”

As explained in part one of our blog series, during the sanitation process, manual cleaning of surfaces and equipment becomes inevitable, since, according to 3A-SSI Standards, if the food-contact components of equipment are not designed for CIP or other automated methods of cleaning, these parts should be cleaned and sanitized manually.

Embracing an integrated sanitation approach

Sanitation is not just about cleaning and sanitizing surfaces and equipment but is a holistic risk-based methodology aimed at significantly minimizing or preventing allergen cross-contact and/or microbiological and foreign material cross-contamination incidents within a facility. Illustrated below are the components of an integrated sanitation approach:


In a nutshell, here is a good list of industry best practices that may be integrated into a sanitation program:

  • Color-coding – Use total-color tools to differentiate between hygienic zones, or allergen zones, or to distinguish between tools used for cleaning food-contact and non -food contact surfaces.
  • Hygienic Zoning – Implement a good zoning approach that separates raw and finished products, allergen products from non-allergen products, and thus prevents, or significantly minimizes, cross-contamination incidents. Proper zoning standards also support environmental monitoring and control programs.
  • Hygienic Design – Facility surfaces, equipment, utensils, and tools of a hygienic design and construction are more quickly and easily cleaned after use and pose less risk of contaminant harborage and transfer.
  • Process Flow Management – Manual cleaning and tools streamline processes because, in part, proper selection, storage, cleaning, and care of tools prevent contamination incidents in a food plant.
  • 5S – Workplace organization methods that incorporate elements of Sort, Straighten, Shine, Standardize, and Sustain into a manual cleaning program will be of benefit.


Manual cleaning, as an inevitable part of FDA FSMA Sanitation Control; FSIS-USDA regulatory requirement; and global and industry standard expectations, provides a proactive measure that should not only prevent or minimize food recalls, but also go a long way towards avoiding or reducing site inspection violations and foodborne illnesses.


Selected References: